REGEND – Small Scale Renewable Energy Technologies With Income Generating Activities in Rural Areas Within a Nexus Framework

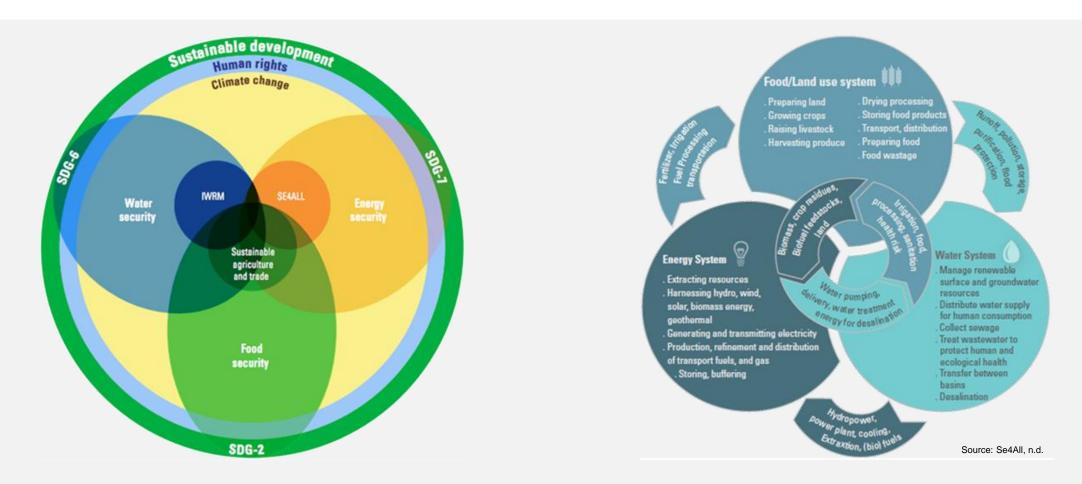
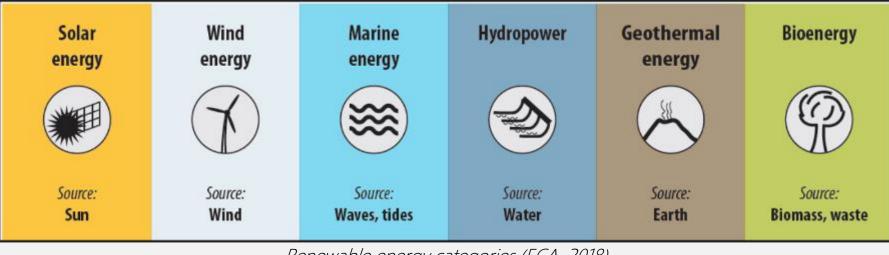

Addressing The WEF Nexus in the Context of Climate Change and Sustainable Development – 22 October 2020

Table of Contents


- The Nexus Approach within the SDGs and Climate Change & The WEF Nexus Framework
- Definitions
- Main Small-Scale RE Technologies (RETs)
- Assessment of Small-Scale RETs for Rural Areas Applications
- Methodology for Mapping RE Types and RETs
- RE Types and RET Options for Various Applications
- Matching Small-Scale RETs and Applications for Rural Areas
- Women Empowerment & Entrepreneurship
- Case Study
- Regional Initiative to Promote Small–Scale Renewable Energy Applications in Rural Areas of the Arab Region "REGEND"
- Conclusions & Recommendations

The Nexus Approach within the Sustainable Development Goals and Climate Change & The WEF Nexus Framework

Definitions

- Renewable Energy: The energy generated from renewable, theoretically inexhaustible and non-fossil-based, energy sources which are replenished in a human lifetime. Renewable energy sources include solar, wind, marine (ocean), hydropower, geothermal and bioenergy.
- Small-Scale RE Technology: The technology which converts RE sources into electrical or thermal energy with an output power capacity up to around 100 kW.

Renewable energy categories (ECA, 2018)

Main Small-Scale RE Technologies (RETs)

1. Solar Energy

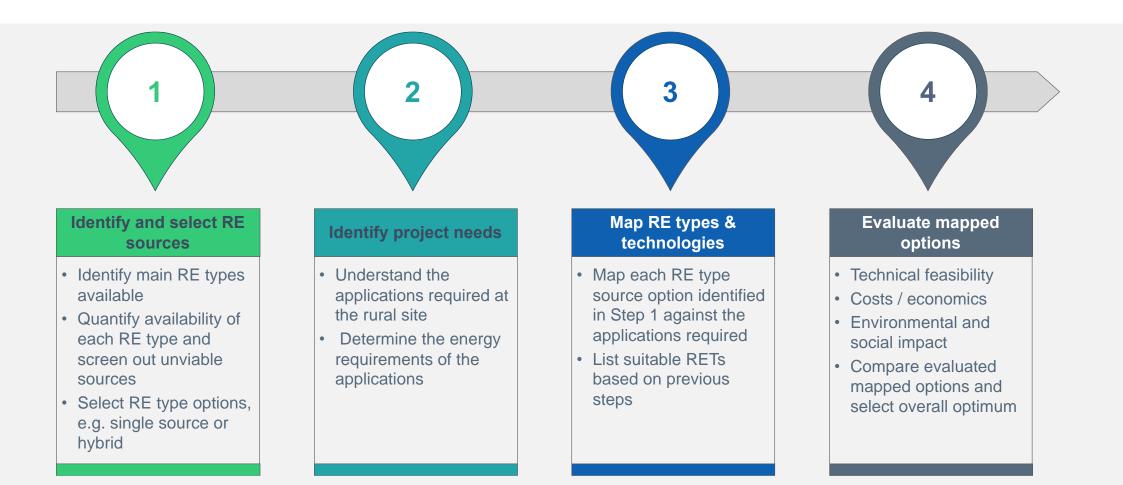
4. Hydropower Energy

2. Wind Energy

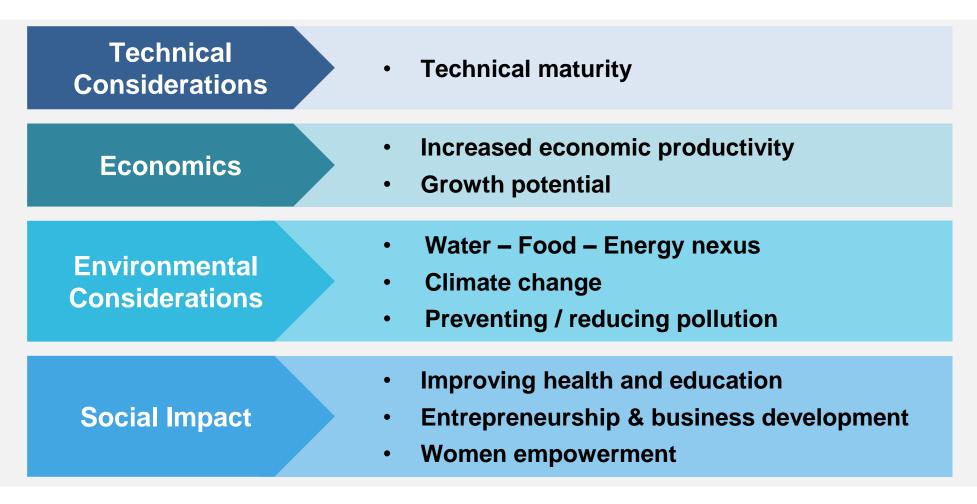
3. Marine (Ocean) Energy

6. Bioenergy

5. Geothermal Energy



© Copyright ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without written permission


Assessment of Small-Scale RETs for Rural Areas Applications

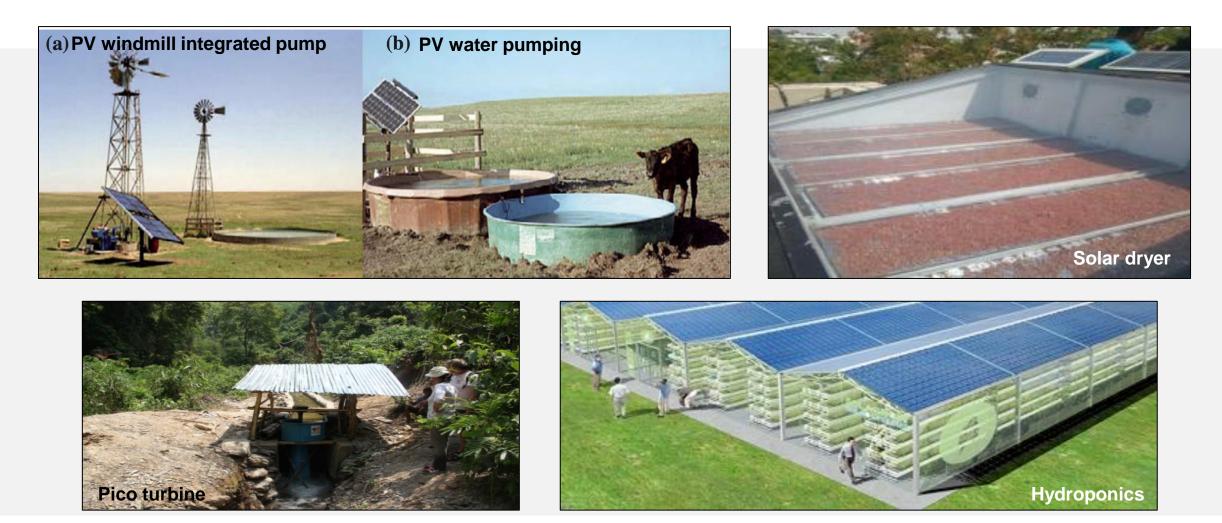
Technical Suitability	Economics	Environmental	Social Impact
 Fit-for-purposeness Usability Compliance 	 Capital expenditure Operating expenditure Overall Life Cycle Cost Economic productivity Benchmarking Economies of scale 	 Benefits to the environment Adverse effects Water-energy-food nexus 	 Local resourcing Politics Culture Individual and community health and other factors

Methodology for Mapping RE Types and RETs

Potential Benefits of Small-Scale RETs

RE Types and RET Options for Various Applications (1/3)

	Applications														
	Power	Power Agriculture						Domestic			Lighting			,	
Renewable Energy Type & Technologies	Electricity Generation	Pumping for Irrigation	Dryers	Hydroponics	Grain Milling	Industrial Refrigeration	Heating	Cooling & Refrigeration	Cooking	Powering Appliances	Domestic	Street or Farm	Heating	Disinfection	Desalination
SOLAR															
Concentrated Solar Power (CSP)	\checkmark								\checkmark						
Photo Voltaic (PV) Panels	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark			\checkmark
Solar Dryer			\checkmark												
Solar Disinfection (SODIS)														\checkmark	
Flat Plate Collector (FPC)													\checkmark		
Evacuated Tube Collector (ETC)													\checkmark		
Solar Thermal Cooling System						\checkmark		\checkmark							
Solar Electrical Cooling System								\checkmark							
Solar (Thermal) Collector for Heating							\checkmark								


RE Types and RET Options for Various Applications (2/3)

	Applications														
	Power	Power Agriculture						Domestic			Lighting		Water		,
Renewable Energy Type & Technologies	Electricity Generation	Pumping for Irrigation	Dryers	Hydroponics	Grain Milling	Industrial Refrigeration	Heating	Cooling & Refrigeration	Cooking	Powering Appliances	Domestic	Street or Farm	Heating	Disinfection	Desalination
WIND POWER															
Wind Turbine / Generator	\checkmark						\checkmark	\checkmark		\checkmark					\checkmark
Windmill (Wind Mechanical Pump)		\checkmark			\checkmark										
SOLAR & WIND HYBRID															
Windmill & Photovoltaic Panel	\checkmark	\checkmark			\checkmark										
Wind Turbine & Photovoltaic Panel	\checkmark				\checkmark					\checkmark	\checkmark	\checkmark			
SOLAR & BIOMASS HYBRID															
Power & Heat Coupled Systems							\checkmark								
HYDRO															
Hydropower Plant / Turbine	\checkmark									\checkmark					

RE Types and RET Options for Various Applications (3/3)

	Applications														
	Power		Ag	ricultu	ure			Dom	estic		Ligh	nting		Water	•
Renewable Energy Type & Technologies	Electricity Generation	Pumping for Irrigation	Dryers	Hydroponics	Grain Milling	Industrial Refrigeration	Heating	Cooling & Refrigeration	Cooking	Powering Appliances	Domestic	Street or Farm	Heating	Disinfection	Desalination
BIOMASS															
Biofueled Power Generator															
Power & Heat Coupled Systems													\checkmark		
Biofuel (Ethanol / Biodiesel) Stove															
Biodigester for Biogas Production						\checkmark									
Fuel Wood & Green Residue															
Biomass Fuel Briquette															
Improved Cooking Stove															
GEOTHERMAL															
Geothermal Generator	\checkmark												\checkmark		
MARINE (OCEAN)															
Marine Turbine	\checkmark														

Matching Small-Scale RETs and Applications for Rural Areas 1. Agriculture

Matching Small-Scale RETs and Applications for Rural Areas 2. Domestic Use

Matching Small-Scale RETs and Applications for Rural Areas 3. Lighting 4. water

Solar, wind solar hybrid and wind streetlamps

© Copyright ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without written permission

Women Empowerment & Entrepreneurship

Shaimaa Omar - Young entrepreneur creating energy from agri-waste

- Better health condition and education as well as small business opportunities can help improve the living conditions for the community.
- Street lighting can also improve the **safety** of the community, allowing them to go out or work after sunset.
- Entrepreneurial activities related to RETs can specifically be geared towards women.
- Incentives and tailor-made policies are key to maximizing women empowerment and entrepreneurship.

Case Study of Small-Scale RET (Irian Jaya, Indonesia)

Case Study of Small-Scale RET (Irian Jaya, Indonesia)

1. Background

- Irian Jaya village community relies primarily on subsistence farming and fishing.
- It is fairly remote, any purchased material would first need to be trucked over 100 km from the city of Jayapura, Irian Jaya to the nearest dock and then requires a 3-hour boat trip to the village.
- YUSI designed and installed a microhydropower system in the village.
- YUSI also provided training and direct support of the installed micro-hydropower system with spare parts and repairs.

2. Cost

- The government provided financial assistance towards the capital costs after receiving the request from the village leaders.
- No costs were associated with the poles as they were provided by the village. Local ironwood trees that grew in abundance near the village and naturally preserved were utilised.
- The cost of the mini-grid and house wiring averaged \$60 US per household and the power plant averaged an additional \$130 US per household.

Case Study of Small-Scale RET (Irian Jaya, Indonesia)

3. Benefits

- A few innovative villagers created additional income by powering a few incandescent lamps to provide warmth for raising chicks in an otherwise damp environment to support small poultry businesses.
- The government clinic installed a small refrigerator to preserve medical supplies. As a result, this improved the health condition of the community through access to vaccinations and medications.
- Retention of government staff for clinics and schools improved. Quality lighting at home improved the ability of students to study adequately at home thus supporting better educational outcomes.

4. Lessons Learnt

- The village government authority was responsible for collecting the monthly tariffs. However, this type of accounting is not transparent and often resulted in funds disappearing or being used for other things.
- An honor system was expected to stop individual households from drawing more than 40W of power from the mini-grid.
- However, in reality, many homes exceeded this limit and eventually the cumulative result was the turbine shutting down whenever its limit was exceeded.

Regional Initiative to Promote Small–Scale Renewable Energy Applications in Rural Areas of the Arab Region "REGEND"

Pillars	 RE Technologies Effective/innovative RE-Small scale, decentralized and modular energy systems. Water-Energy-Food nexus Access to productive resources, appropriate and reliable services. 	 Human Capacity Model based on knowhow Trainings, Knowledge skills/Advisory Services. Brining change among rural community from resource poor living standards to reliable, affordable and modern sources of energy. 	 Women's Empowerment & Social inclusion Economic power in rural women's hands Female mentor Participative and bottom-up approach. 	 Entrepreneurial development Economic transformation, Environmental and socio-economic development priorities Entrepreneurial jobs in productive sectors Spawn energy-based enterprises around RE based service providers. 	 Policy & institutional Framework Pro-poor investments and private sector involvement Synergies among national/regional stakeholders. Innovative incentive mechanisms.
Cross Cutting	Untopped PE recour	Human Rights, Ge ces, High unemploymen	nder Equality, Resiliend	ce to Climate Change	rity Energy powerty and

Conclusions & Recommendations

Conclusions

- There is a great RE potential globally, including in the Arab region where it is quite under-utilised.
- > Many RETs are already affordable.
- RETs selection depends on specific locations and projects.
- Many good examples of using small-scale RETs in rural areas to improve the livelihood of the communities exist, some of which in the Arab region.

Recommendations

- Post-pilot sustainability of RET-based projects
- Fit-for-purpose policy (including access to Finance and training) to facilitate development of smallscale RET-based projects in rural areas, especially for women.
- Awareness campaigns, some specifically targeting women.
- Sharing experiences and opportunities at local, regional and intra-regional levels.

Dr. Syham Bentouati Managing Director NAFAS International, OMAN ESCWA Consultant syham@nafasinternational.com

Thank you